
Preference Logic Programs using Answer Sets

Claudia Zepeda1 and Mauricio Osorio2

1 Universidad Politécnica de Puebla,
Tercer Carril del Ejido Serrano, San Mateo Cuanala,

Municipio Juan C. Bonilla, Puebla, 72640 México
czepedac@gmail.com,

2 Universidad de las Américas, CENTIA,
Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@gmail.com

Abstract We introduce preference rules which allow us to specify prefe-
rences as an ordering among the possible solutions of a problem. Specifi-
cally, we propose the semantics for preference logic programs. The forma-
lism used to develop our work is Answer Set Programming(ASP). Most
research on ASP and in particular about preferences in ASP supposes
syntactically simple rules. So, our approach permits expressing prefe-
rences for general theories.
Keywords: Logic Programming, Answer Set Programming, Preferences.

1 Introduction

Preferences can be used to compare feasible solutions of a given problem, in or-
der to establish if there is an order among these solutions or to establish whether
such solutions are equivalents w.r.t. some requirements. Currently there are se-
veral approaches in non monotonic reasoning dealing with preferences [5]. In
this paper we introduce preference logic (PL) programs which permit represent
preferences and desires. The formalism used to develop our work is Answer Set
Programming (ASP) [6]. ASP is a declarative knowledge representation and logic
programming language. ASP represents a new paradigm for logic programming
that allows us, using the concept of negation as failure, to handle problems with
default knowledge and produce non-monotonic reasoning. Two popular software
implementations to compute answer sets are DLV1 and SMODELS2. The effi-
ciency of such programs allowed to increase the list of practical applications in
the areas of planning, logical agents and artificial intelligence.

Most research on ASP and in particular about preferences in ASP supposes
syntactically simple rules (see for example [2,1,12]). This is justified since, most
of the times, those restricted syntaxes are enough to represent a wide class of
interesting and relevant problems. It could seem unnecessary to generalize the
notion of answer sets to some more complicated formulas. However, a broader

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.tcs.hut.fi/Software/smodels/

© A. Gelbukh, S. Suárez. (Eds.)
 Advances in Computer Science and Engineering.
Research in Computing Science 23, 2006, pp. 3-14

Received 07/07/06
Accepted 07/10/06

Final version 13/10/06

syntax for rules could bring some benefits. For example, the use of nested ex-
pressions could simplify the task of writing logic programs and improve their
readability. Hence, PL programs is an approach about preferences and desires
to general theories.

A PL program is a set of well formed formulas joined to a set of preference
rules. The set of well formed formulas of a PL program allows us to obtain
the different answer sets representing the solutions of a problem. For instance,
{ice cream∨ (coffee∧cake)← . } represent two solutions, ice-cream and coffee
with cake. The set of preference rules of a PL program express the preferences and
desires of somebody. Preference rules use a new connective, ∗, called preference
operator to represent an ordering among the preference options. For instance,
ice cream∗cake

pr← . indicates preference for ice-cream over cakes. If a preference
rule has only one preference option, then it represents a desire. For instance,
coffee

pr← . indicates the desire of drinking coffee. The complete PL program is:

ice cream ∨ (coffee ∧ cake)← . %To obtain the solutions

ice cream ∗ cake
pr← . %a preference rule (1)

coffee
pr← . %a desire

Currently, there are some answer set approaches that suggest a broader syn-
tax [8,10,4]. In particular the authors of [4] describe an approach for preferences
called Answer Set Optimization (ASO) programs. ASO programs have two parts.
The generating program and the preference program. The first one produce ans-
wer sets representing the solutions, and the second one expresses user preferences.
The body of a rule representing preferences is defined as a conjunction of literals,
and its head is defined as an ordering among the preference options. The pre-
ference options are particular formulas called boolean combinations. A boolean
combination is a formula built of atoms by means of disjunction, conjunction,
strong and default negation, with the restriction that strong negation is allowed
to appear only in front of atoms, and default negation only in front of literals.

At this point, we could think that PL programs and ASO programs [4] could
be similar approaches to represent preferences. These idea could come from the
fact that both approaches have two parts (one to get the answer sets and one to
express preferences), and both approaches allow us a broader syntax to express
preferences. However, ASO programs and PL programs differ considerably in
syntax and semantics.

As we mentioned, the first difference is related to syntax. Specifically, the
parts of both approaches to get the answer sets and their parts to express pre-
ferences have different syntax. ASO programs allow us to get the answer sets
from any type of logic program (for instance, normal, extended, disjunctive,
etc). PL programs allows us to get the answer sets from a set of well formed
formulas. Additionally, the part of ASO programs to express preferences uses
boolean combinations which have a restricted syntax. The part of PL programs
to express preferences uses well formed formulas. So, PL programs allow us a

4 Zepeda C. and Osorio M.

broader syntax than ASO programs. The idea of permitting a broader syntax of
PL programs comes from [10]. In [10] the authors propose a broader syntax for
logic programs with ordered disjunction (LPOD) and its semantics. LPOD’s are
introduced in [2].

The second difference between ASO programs and PL programs is their se-
mantics. For instance, we shall see in Section 3 that {ice cream} and
{coffee, cake} are the preferred answer sets of the PL program (1). However, if
we represent the two parts of the PL program (1) as an ASO program then, we
can verify that {ice cream} is its only preferred answer set. Additionally, there
is only one criterion to get the preferred answer sets from an ASO program;
and there are three different criteria to get the preferred answer sets from a PL
program. Finally, in [4] is not defined whether ASO programs can have prefer-
ences with only one option or not. PL programs allow us to have preferences
with only one option and they are called desires. We want to mention that, the
semantics of PL programs is inspired by the semantics of LPOD’s introduced in
[2], the extended semantics for LPOD’s proposed in [10], and the work about
preferences in [13]. It is worth mentioning that the authors of [13] indicate that
their work arose from the necessity to model a real problem. The real problem
is related to represent preferences about the evacuation plans in a risk zone.

Our paper is structured as follows. In Section 2 we introduce the general
syntax of the logic programs used in this paper. We also provide the definition
of answer sets in terms of logic G3. In Section 3 we present the semantics for
preference logic programs. In Section 4 we present how our approach is related
to extended LPOD’s. Finally in Section 5 we present some conclusions.

2 Background

In this section we review some fundamental concepts and definitions that will
be used along this work. We introduce first the syntax of formulas and programs
based on the language of propositional logic. We also present the definition of
answer sets in terms of logic G3.

2.1 Propositional Logic

In this paper, logic programs are understood as propositional theories. We shall
use the language of propositional logic in the usual way, using propositional
symbols: p, q, . . . , propositional connectives ∧,∨,→,⊥ and auxiliary symbols:
(,). The well formed propositional formula f ← g is just another way of writing
g → f . We assume that for any well formed propositional formula f , ¬f is just
an abbreviation of f → ⊥ and > is an abbreviation of ⊥ → ⊥. We point out that
¬ is the only negation used in this work. An atom is a propositional symbol. A
literal is either an atom a (a positive literal) or the negation of an atom ¬a (a
negative literal). A negated literal is the negation sign ¬ followed by any literal,
i.e. ¬a or ¬¬a. In particular, f → ⊥ is called constraint and it is also denoted
as ← f . Given a set of well formed formulas F , we define ¬F = {¬f | f ∈ F}.

Preference Logic Programs using Answer Sets 5

Sometimes we may use not instead of ¬ and a, b instead of a ∧ b, following the
traditional notation of logic programming. A regular theory or logic program is
just a finite set of well formed formulas or rules, it can be called just theory or
program where no ambiguity arises. We shall define as a rule any well formed
formula of the form: f ← g. The parts on the left and on the right of “← ” are
called the head and the body of the rule, respectively. The signature of a logic
program P , denoted as LP , is the set of atoms that occur in P . We want to stress
the fact that in our approach, a logic program is interpreted as a propositional
theory. For readers not familiar with this approach, we recommend [11,9] for
further reading. We will restrict our discussion to propositional programs.

2.2 The logic G3

Some logics can be defined in terms of truth values and evaluation functions.
Gödel defined the multivalued logics Gi, with i truth values. In particular, G2

coincides with Classical Logic C. We briefly describe in the following lines the
3-valued logic G3 since our work uses the logical characterization of answer sets
based on this logic presented in [9]. Gödel defined the logic G3, with 3 values,
with the following evaluation function I:

– I(B ← A) = 2 if I(A) ≤ I(B) and I(B) otherwise.
– I(A ∨B) = max(I(A), I(B)).
– I(A ∧B) = min(I(A), I(B)).
– I(⊥) = 0.

An interpretation is a function I : L → {0, 1, 2} that assigns a truth value to each
atom in the language. The interpretation of an arbitrary formula is obtained
by propagating the evaluation of each connective as defined above. Recall that
¬ and > were introduced as abbreviations of other connectives. For a given
interpretation I and a formula F we say that I is a model of F if I(F) = 2.
Similarly I is a model of a program P if it is a model of each formula contained in
P . If F is modeled by every possible interpretation we say that F is a tautology.
For instance, we can verify that ¬¬a→ a is not a tautology in G3, and a→ ¬¬a
is a tautology in G3. For a given set of atoms M and a program P we will write
P `G3 M to abbreviate P `G3 a for all a ∈ M , and P
G3 M to denote the
fact that P `G3 M and P is consistent w.r.t. logic G3 (i.e. there is no formula
A such that P `G3 A and P `G3 ¬A).

2.3 Answer sets

As usual in ASP, we take for granted that programs with predicate symbols are
only an abbreviation of the ground program. We shall define answer sets of logic
programs. The answer sets semantics was first defined in terms of the so called
Gelfond-Lifschitz reduction [6] and it is usually studied in the context of syntax
dependent transformations on programs3. We follow an alternative approach
3 Currently, there are several answer set solvers, such as:

DLV (http://www.dbai.tuwien.ac.at/proj/dlv/) and SMOD-
ELS(http://www.tcs.hut.fi/Software/smodels/)

6 Zepeda C. and Osorio M.

started by Pearce [11] and also studied by Osorio et.al. [9]. This approach cha-
racterizes the answer sets for a propositional theory in terms of logic G3 and it is
presented in the following definition. There are several nice reasons to follow this
approach. One of these reasons is that it is possible to use logic G3 to provide a
definition of ASP for arbitrary propositional theories, and at the same time to
use the logic framework in an explicit way [9]. Moreover, this approach provides
a natural way to extend the notion of answer sets in other logics [9]. The notation
is based on [9]. We point out that ¬ denotes default negation and it is the only
type of negation considered in this paper. However, it is worth mentioning that
we always can handle the other negation called classical or even strong negation,
denoted by −, by transforming the atoms with classical negation [7]. Each atom
with classical negation , −a, that occurs in a formula of a logic program should
be replaced by a new atom, a′, and the rule ¬(a ∧ a′) should be added to the
logic program. Rule ¬(a ∧ a′) can also be written as (a ∧ a′)→ ⊥.

Definition 1. [9] Let P be a program and M a set of atoms. M is an answer
set of P iff P ∪ ¬(LP \M) ∪ ¬¬M
G3 M .

For instance, the answer sets of

ice cream ∨ (coffee ∧ cake)← .

are {ice cream} and {coffee, cake} because,

P ∪ {¬coffee,¬cake} ∪ {¬¬ice cream}
G3 {ice cream}, and
P ∪ {¬ice cream} ∪ {¬¬coffee,¬¬cake}
G3 {coffee, cake}.

3 Syntax and semantics for preferences

In order to specify preferences we introduce a new connective, ∗, called pre-
ference operator. A preference rule specifies the preferences for something. Its
head corresponds to an ordered list of well formed formulas connected using the
operator ∗, where each well formed formula represents a preference option.

Definition 2. A preference rule is a formula of the form: f1 ∗ · · · ∗ fn
pr← g

where f1, . . . , fn, g are well formed propositional formulas. A preference logic
(PL) program is a finite set of preference rules and an arbitrary set of well
formed formulas. If n = 1 the preference rule is called desire.

If g = > the preference rule can be written as f1 ∗ · · · ∗ fn
pr←. The formulas

f1 . . . fn are called the options of a preference rule.

Example 1. A restaurant has two options for dessert, ice-cream or coffee with
cake. Peter wants ice cream rather than cake and if possible he desires coffee.
Hence, restaurant’s options, and Peter’s preferences and desires can be simply
represented as the PL program (1), i.e.,

Preference Logic Programs using Answer Sets 7

ice cream ∨ (coffee ∧ cake)← .

ice cream ∗ cake
pr← .

coffee
pr← .

Let r1 and r2 be the preference rule ice cream ∗ cake
pr← . and the desire

coffee
pr← . respectively.

The answer sets of a PL program are the answer sets of the logic program
obtained by remove the preference rules from the original PL program.

Definition 3. Let Pref be the set of preference rules of a PL program P . Let M
be a set of atoms. M is an answer set of P iff M is an answer set4 of P \Pref .

So, the answer sets of the PL program of Example 1 are {ice cream} and
{coffee, cake}.

Part of the semantics of PL programs was inspired by the semantics of
LPOD’s [2]. Due to lack of space we do not present the semantics of LPOD’s,
but readers not familiar with this approach can review [2]. The semantics of
PL programs is based on a function called satisfaction degree. The satisfaction
degree with respect of an answer set of a preference rule indicates how well is
this preference rule satisfied by the answer set. A satisfaction degree equal to 1 is
better than all others. A satisfaction degree lower than other is better than the
second one. Our definition of satisfaction degree is in terms of logic G3, however
since logic programs (or theories) used in this work are complete (i.e. for any
formula A of a program P , either P `G3 A or P `G3 ¬A), we could use classic
logic too 5.

Definition 4. Let M be an answer set of a PL program P . Let r := f1 ∗ · · · ∗
fn

pr← g be a preference rule of P . Let m be the max{n | f1 ∗ · · · ∗ fn
pr←

g is a preference rule of P}. We define the satisfaction degree of r in M , de-
noted by degM (r), as a correspondence rule that defines the following function:

1. 1 if M ∪ ¬(LP \M) 6`G3 g.
2. min {i |M ∪ ¬(LP \M) `G3 fi} if M ∪ ¬(LP \M) `G3 g.
3. m + 1 if M ∪ ¬(LP \ M) `G3 g and there is not 1 ≤ i ≤ n such that

M ∪ ¬(LP \M) `G3 fi.

The part (1) of Definition 4 indicates that rule r has a satisfaction degree
equal to 1 in the answer set because, the rule r does not apply and this fact makes
rule r irrelevant to prefer the answer set. The part (2) of Definition 4 indicates
that rule r is satisfied in the answer set to some degree. Finally, the part (3) of
Definition 4 indicates that the rule r has the largest value of satisfaction degree
in the answer set because non of the options of the preference rule r holds.
According to our intuition, this part (3) of Definition 4 will be useful in case

4 Note that since we are not considering strong negation, there is no possibility of
having inconsistent answer sets.

5 For complete theories, logic G3 is equivalent to classic logic [9].

8 Zepeda C. and Osorio M.

that non of the options of each preference rule in P holds in all the answer sets
of P. So, in this case all the answer sets of the PL program should be preferred.
For instance, let us suppose that I have a preference for fruit over cookies and
orange juice over milk for breakfast. Additionally, I have only two options for
breakfast, salad or eggs. In this case both options are incomparable with respect
to my preferences and both of them should be preferred.

Example 2. Let P be the PL program of Example 1. By Definition 3 we know
that program P has two answer sets: M1 = {ice cream} and M2 = {coffee, cake}.
According to Definition 4 we can verify that m = 2 and that,

degM1(r1) = 1, degM2(r1) = 2,
degM1(r2) = 3, degM2(r2) = 1.

It is interesting to mention that degM1(r2) is equal to 3 because, non of the
options of r2 holds in M1 (see part (3) of Definition 4). So, degM1(r2) = m + 1.

The following theorems and definitions are about the preferred answer sets of
a PL program. All of them are similar to the definitions given in [2]. However we
do not have to forget that they are defined for general theories (see Definition 2)
and are based on our own definition of satisfaction degree.

Theorem 1. Let Pref be the set of preference rules of a PL program P . If M
is an answer set of P then M satisfies all the rules in Pref to some degree.

The satisfaction degree of each preference rule of a PL program allows us to
define the set of preference rules with the same satisfaction degree. We use these
sets to obtain the preferred answer sets of the PL program according to some
criterion.

Definition 5. Let P be a PL program and let Pref be the set of preference rules
of P . Let M an answer set of P . We define Si

M (P) = {r ∈ Pref | degM (r) = i}.

Example 3. Let P be the PL program of Example 1. Let us consider the satis-
faction degree of rules r1 and r2 in Example 2. Then we can verify that,

S1
M1(P) = {r1}, S2

M1(P) = {}, S3
M1(P) = {r2},

S1
M2(P) = {r2}, S2

M2(P) = {r1}, S3
M2(P) = {}.

The following definitions indicate how to apply different criteria to the sets
of preference rules Si

M (P) of a PL program, in order to know if one answer set
is preferred to another answer set and to obtain the most preferred answer sets.
The criteria used are set inclusion, set cardinality or pareto criterion. We start
describing how to apply the set inclusion criterion.

Definition 6. Let M and N be answer sets of a PL program P . M is inclusion
preferred to N , denoted as M >i N , iff there is an i such that Si

N (P) ⊂ Si
M (P)

and for all j < i, Sj
M (P) = Sj

N (P).

Definition 7. A set of atoms M is an inclusion-preferred answer set of a PL
program P , if M is an answer set of P and there is not answer set M ′ of P ,
M 6= M ′, such that M ′ >i M .

Preference Logic Programs using Answer Sets 9

Example 4. Let P be the PL program of Example 1. If we consider the results of
Example 3 then, we can verify that M1 is not inclusion-preferred to M2 or vice
versa since S1

M1
(P) is not a subset of S1

M2
(P) or vice versa. We also can see that

there is not M answer set of P , M 6= M1 and M 6= M2, such that M >i M1 or
M >i M2. Hence M1 and M2 are both the inclusion-preferred answer sets of P .

From Example 4 we can see that if M1 and M2 are inclusion-preferred answer
sets of P then, it means that Peter could have ice-cream or coffee with cakes
for breakfast. This result agrees with our intuition because according to Peter’s
preferences and desires: M1 includes ice-cream that is one of the options with
the highest preference, and M2 includes coffee that is a desire with the highest
preference too.

The following two definitions indicate how to use set cardinality criterion to
prefer an answer set to another answer set, and to obtain the most preferred
answer sets. Before presenting these definitions, we have to mention that this
criterion was particularly useful to specify preferences for evacuation plans using
ASP approaches in [13]. One of the criteria used to prefer the evacuation paths in
[13] was the number of segments of roads in each evacuation path. In this case,
the paths with the minimum number of segments of road were the preferred
paths. So, the idea of using the cardinality set criterion resulted very natural
and easy in this case.

Definition 8. Let M and N be answer sets of a PL program P . M is cardinality
preferred to N , denoted as M >c N , iff there is an i such that |Si

M (P)| >

|Si
N (P)| and for all j < i, |Sj

M (P)| = |Sj
N (P)|.

Definition 9. A set of atoms M is a cardinality-preferred answer set of a PL
program P , if M is an answer set of P and there is not answer set M ′ of P ,
M 6= M ′, such that M ′ >c M .

Example 5. Let P be the PL program of Example 1. If we consider the results
of Example 3 then, we can verify that M2 is cardinality-preferred to M1 since
|S2

M2
(P)| > |S2

M1
(P)| and |S1

M2
(P)| = |S1

M1
(P)|. We also can see that there is

not answer set M ′ of P , M ′ 6= M2, such that M ′ >c M2. Hence M2 is the
cardinality-preferred answer set of P .

From the Example 5 we can see that if the criterion to prefer one of the menu
options for breakfast is the number of things that the option includes then, we
agree that M2 := {coffee, cakes} is a better option than M1 := {ice cream}
because M2 has two things to eat and M1 has only one.

Finally, we describe the pareto criterion. As it is described in [2], in some cases
the result of adding not achievable options to preference rules does not agrees
with what we could expect. For instance, let us extend the problem specification
of Example 1 as follows: the restaurant also can offer gelatine in the mornings,
Peter prefers gelatine to ice cream, and Peter can’t have gelatine because he
always arrives at the restaurant at night. So, restaurant’s options and Peter’s
preferences can be represented as the following PL program,

10 Zepeda C. and Osorio M.

gelatine ∨ ice cream ∨ (coffee ∧ cake)← .
← gelatine.

gelatine ∗ ice cream ∗ cake
pr← .

coffee
pr← .

In spite of our intuition indicates that this program should have the same two
inclusion-preferred answer sets of Example 4, we can verify that {coffee, cake}
is the only inclusion preferred-answer set of this PL program. In order to avoid
effects of this kind we can use the pareto criterion:

Definition 10. Let M and N be answer sets of a PL program P . Let Pref be
the set of preference rules of P . M is pareto preferred to N , denoted as M >p N ,
iff there is an r ∈ Pref , such that degM (r) < degN (r), and for no r′ ∈ Pref
degN (r′) < degM (r′).

Definition 11. A set of atoms M is a pareto-preferred answer set of a PL
program P , if M is an answer set of P and there is not answer set M ′ of P ,
M 6= M ′, such that M ′ >p M .

Example 6. Let P be the PL program of Example 1. Let us consider the results
of Example 2. We can verify that degM1(r1) < degM2(r1) and degM2(r2) <
degM1(r1). So, M1 is not pareto-preferred to M2. In a similar way we can verify
that M2 is not pareto-preferred to M1. We also can see that there is not M
answer set of P , M 6= M1 and M 6= M2, such that M >p M1 or M >p M2.
Hence M1 and M2 are both the pareto-preferred answer sets of P .

4 Related work

Currently there are several approaches in non monotonic reasoning dealing with
preferences [5]. Balduccini et al. relate ASP with preferences introducing CR-
programs with preferences in [1]. Work that relates Answer Set Planning with
preferences using language PP can be found in [12]. Work that relates ASP with
preferences as an LPOD can be found in [2]. LPOD’s are a useful extension of
ASP, providing more natural modeling and easier solutions to many problems.
Currently it is possible to compute the preferred answer sets under the ordered
disjunction semantics using Psmodels [3]. Psmodels is a modification of SMO-
DELS to compute the preferred answer sets of LPOD’s. In [10] a broader syntax
for LPOD’s and its semantics is proposed. This approach was called extended
logic programs with ordered disjunction (ELPOD).

The approach presented in this paper follows the approaches given in [2,10].
In spite of ELPOD’s [10] and PL programs have a similar broader syntax and use
the three criteria (set inclusion, set cardinality and pareto criterion) to get the
preferred answer sets, both approaches are different. Specifically, PL programs
differ from ELPOD’s in two main features.

The first difference between PL programs and ELPOD’s is their semantics.
ELPOD’s represent a particular prioritized form of disjunction over the preferen-
ce options and PL programs represent preference over the preference options. For

Preference Logic Programs using Answer Sets 11

instance, if we represent the two parts of the PL program of Example 1 as an EL-
POD then, we can verify that {ice cream, coffee} and {ice cream, coffee, cake}
are the preferred answer sets using the three criteria: set inclusion, set cardina-
lity and pareto criterion. Clearly, this result does not agree with our intuition,
results and discussions presented in Example 4, Example 5, and Example 6.

The second difference between PL programs and ELPOD’s is the form to
represent a problem with preferences. A PL program represents this kind of
problems as a set of well formed formulas joined to a set of preference rules.
So a PL program has two parts, one to generate the answer sets and one to
express the preferences. In ELPOD’s this does not occur. An ELPOD represents
a problem with preferences as a set of extended ordered disjunction rules.

On the other hand, in [14] the authors define the concept of maximal answer
sets of a program w.r.t. a set of atoms. For instance, if the answer sets of a
program P are {b, c, e}, {b, c, d}, and {e, a, c} then, {b, c, d} is the maximal answer
set with respect the set of atoms A := {b, d, f} because it has the maximum
number of elements in the set A. Moreover, in [14] is described how this concept
could be useful in a real application related to argumentation in the domain of
organ transplantation. The idea in [14] is to get the maximal answer sets from
a particular program such that, these maximal answer sets correspond to the
preferred extensions of an argument framework.

It is easy to verify that PL programs can be used to obtain the maximal
answer sets of a logic program P w.r.t. a set of atoms A. The PL program used
is obtained by adding to P a set of desires (see Definition 2). The set of desires
is defined as follows: for each atom a in A, the desire a

pr← . is added. So, in the
previous example the PL program used to obtain the maximal answer sets of P

w.r.t. A is: P ∪ {b pr← ., d
pr← . f

pr← .}. The intuition behind each desire is to
indicate that we want that each atom a in A is in the answer sets of the original
program P .

Finally, we want to mention that if we use a PL program P ′ to compute
the maximal answer sets of a program P w.r.t. a set of atoms A then, it is
possible to translate P ′ to a particular ELPOD P ′′ and P ′′ to a LPOD P ′′′. So,
it is possible to use Psmodels [3] with the inclusion set criterion to compute the
maximal answer sets of P from P ′′′.

The translation of the PL program P ′ to an ELPOD P ′′ is as follows: each
desire a

pr← in P ′ has to be replaced by the extended ordered rule ¬¬a×a• where
a• is an atom that neither occurs in P ′ nor occurs in A. Since ¬¬a is equivalent
to the restriction ← ¬a, the intuition behind ¬¬a is to indicate that a should
be in the model of a program. We can find the details about why to use double
default negation in [14].

The translation of the ELPOD P ′′ to a standard LPOD P ′′′ is due to the fact
that neither running Psmodels [3] nor following the definition given by Brewka
[2] for LPOD’s we can obtain the inclusion preferred answer sets for ELPOD’s.
The reason is that the definition given by Brewka for ordered disjunction has
syntactical restrictions. So, in [14] it is also indicated how to translate the par-

12 Zepeda C. and Osorio M.

ticular ELPOD P ′′ to a standard LPOD P ′′′. It is worth to mention that this
translation is very simple.

5 Conclusions

In this work we provide two semantics for PL programs. We propose the only
ASP approach about preferences and desires that allows us to express preference
rules for general theories. We discuss why a broader syntax for rules could bring
some benefits. We also present how our approach is related to ELPOD’s and
how it differs from ELPOD’s.

In future work we plan to research about the properties of the semantics of
preference logic programs.

References

1. M. Balduccini and V. S. Mellarkod. A-prolog with cr-rules and ordered disjunction.
In International Conference on Intelligent Sensing and Information Processing,
pages 1–6, 2004.

2. G. Brewka. Logic Programming with Ordered Disjunction. In Proceedings of the
18th National Conference on Artificial Intelligence, AAAI-2002. Morgan Kauf-
mann, 2002.

3. G. Brewka, I. Niemelä, and T. Syrjänen. Implementing Ordered Disjunction Using
Answer Set Solvers for Normal Programs. In Proceedings of the 8th European
Workshop Logic in Artificial Inteligence JELIA 2002. Springer, 2002.

4. G. Brewka, I. Niemela, and M. Truszczynski. AnswerSet Optimization. In IJCAI-
03, pages 867–872, 2003.

5. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and sur-
vey of preference handling approaches in nonmonotonic reasoning. Computational
Intelligence, 2004.

6. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

7. M. Gelfond and V. Lifschitz. Logic Program with Classical Negation. In D. H. D.
Warren and P. Szeredi, editors, Proceedings of the 7th Int. Conf. on Logic Pro-
gramming, pages 579–597, Jerusalem, Israel, June 1990. MIT.

8. N. Leone and S. Perri. Parametric Connectives in Disjunctive Logic Programming.
In ASP03 Answer Set Programming: Advances in Theory and Implementation,
Messina, Sicily, Sept. 2003.

9. M. Osorio, J. A. Navarro, and J. Arrazola. Applications of Intuitionistic Logic in
Answer Set Programming. Theory and Practice of Logic Programming (TPLP),
4:325–354, May 2004.

10. M. Osorio, M. Ortiz, and C. Zepeda. Using CR-rules for evacuation planning.
In G. D. I. Luna, O. F. Chaves, and M. O. Galindo, editors, IX Ibero-american
Workshops on Artificial Inteligence, pages 56–63, 2004.

11. D. Pearce. Stable Inference as Intuitionistic Validity. Logic Programming, 38:79–91,
1999.

12. T. C. Son and E. Pontelli. Planning with preferences using logic programming. In
LPNMR, pages 247–260, 2004.

Preference Logic Programs using Answer Sets 13

13. C. Zepeda. Evacuation Planning using Answer Sets. PhD thesis, Universidad de
las Americas, Puebla and Institut National des Sciences Appliquées de Lyon, 2005.

14. C. Zepeda, M. Osorio, J. C. Nieves, C. Solnon, and D. Sol. Applications of prefer-
ences using answer set programming. In Submmited to Answer Set Programming:
Advances in Theory and Implementation (ASP 2005).

14 Zepeda C. and Osorio M.

